

RESISTORES BOBINADOS MODELO REVESTIDO A SILICONE

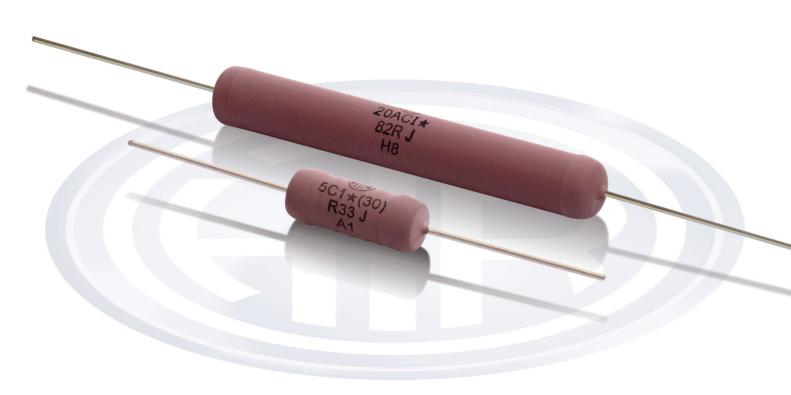
SÉRIE

VHIA

ALTA TEMPERATURA DE SUPERFÍCIE

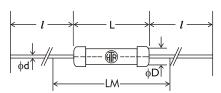
Resistores Bobinados de Potência com Isolante Térmico de Silicone Aplicações Industriais / Profissionais

Relação Pequeno Tamanho: Potência
0.5W até 20 Watts (a 40°C)


• Tolerâncias tão próximas quanto 1%.

• R01 até 120K.

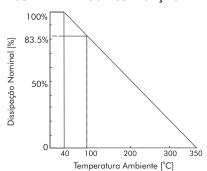
 TCR tão baixa quanto +20ppm/°C disponível, dependendo da aplicação e valor de resistência.
Aplicações de Impulso conforme


IEC 61000-4-5.

CONFIGURAÇÃO FÍSICA

TIPO	POTÊNCIA NOMINAL a 40°C (Ambiente)	DIMENSÕES (mm)					INTERVALO DE RESISTÊNCIA		PESO
		L (max)	♦ D (max)	l ±1.5	d ±0.05	⊕ LM ±1	min	max	TIPICO POR PC (gms)
0.5 MC	0.5W	7.0	2.7	38	0.5	30	R10	1K6	0.21
1 MC	1W	10.9	3.2	38	0.5	30	R10	4K0	0.36
1 AC	1W	11.50	4.5	38	0.8	35	R01	6K2	0.75
2.5 C	2.5W	13.0	5.5	38	0.8	35	R01	10K	1.2
2.5 C1	2.5W	13.0	5.5	38	1.0	35	R01	10K	1.8
3 MC	3W	12.5	5.1	38	0.8	35	R01	7K6	0.8
3 C	3W	15.2	6.0	38	0.8	40	R01	14K	1.2
4 C	4W	16.2	6.9	38	1.0	40	R01	15K	2.0
4 AC	4W	16.5	5.5	38	0.8	40	R01	11K	1.25
4 MC	4W	13.2	5.5	38	0.8	35	R01	10K	1.0
4 CL	4W	23.0	7.2	38	0.8	45	R01	33K	2.9
5 AC	5W	17.5	7.5	38	0.8	40	R01	29K	1.8
5 C1	5W	23.5	8.7	38	1.0	45	R01	47K	3.6
5 C	5W	23.5	8.7	38	0.8	45	R01	47K	3.1
7 AC	7W	25.5	7.5	38	0.8	45	R01	39K	3.6
7 C1	7W	32.5	9.5	38	1.0	55	R10	68K	5.3
10 AC	10W	44.0	8.5	38	0.8	65	R10	88K	6.9
10 C1	10W	44.0	9.8	38	1.0	65	R10	100K	8.3
10 C	10W	44.0	9.8	38	0.8	65	R10	100K	7.3
13 C1	13W	47.0	10.0	38	1.0	70	R10	100K	7.6
15AC	15W	50.0	10.0	38	0.8	70	R10	100K	8.2
15AC1	15W	50.0	10.0	38	1.0	70	R10	100K	8.6
20AC	20W	67.0	10.0	38	0.8	90	R10	120K	11.5
20AC1	20W	67.0	10.0	38	1.0	90	R10	120K	12.0

- 1. Os terminais usuais nesta série são de Copper Weld® estanhado.
- 2. Para a capacidade de Impulso, por favor ver a secção de Dados / Características Elétricas.


RESISTORES NÃO INDUTIVOS

Resistores do tipo de baixa indutância de enrolamento Aryton Perry estão disponíveis nesta série. Para os tipos não indutivos, reduzir os valores de resistência máxima apresentados para 50% e a tensão continua de funcionamento para 70%.

CONDUTORES PRÉ-FORMADOS

As terminações dos resistores podem ser dobradas e cortadas segundo requisitos para uma rápida montagem no PCB. Por favor envie esquemas detalhados do tipo de préformação necessária.

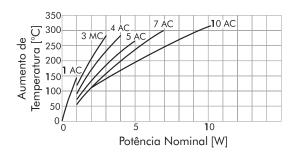
CURVA DE DESCLASSIFICAÇÃO

 $[\]Diamond\;$ Para modelos não indutivos e para valores de resistência < 1R0 + 0.8 mm é

[⊕] Para valores de resistência menores do que R10 e tolerância menor do que ±2%, por favor medir a resistência ao longo do comprimento centrado LM.

RESISTORES BOBINADOS MODELO REVESTIDO A SILICONE

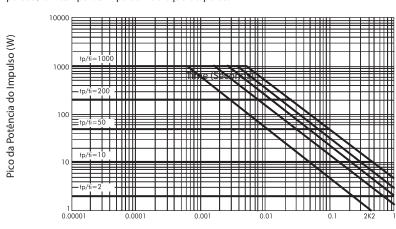
CARACTERÍSTICAS / DADOS ELÉTRICOS

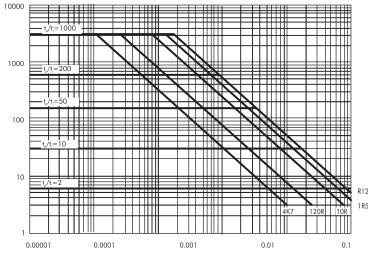

PARÂMETRO / TESTE DE DESEMPENHO & MÉTODO DE TESTE	REQUISITOS DE DESEMPENHO
Temperatura Ambiente Nominal desce até zero a 350°C - [Ver Curva de desclassificação apresentada acima].	Dissipação de potência completa a 40°C e linearmente descarregada
Tensão Nominal / Limite de Tensão / Tensão Máxima de Funcionamento	$V = \sqrt{PxR}$
Tensão Dielétrica Suportada / Insensível a Tensões [Método de teste no. 301 de MIL 202F] - Baseado no limite de tensão x 2 ou 500V, o que for aplicável.	Max. $\Delta R \pm (1\% + R05)$. Sem faíscas elétricas, danos mecânicos, arcos voltaicos ou perda do isolamento.
Resistência do Isolamento [Método de Teste no. 302 de MIL 202F]	> 1000M (seco) > 100M (molhado)
Sobrecarga Temporária [Método de Teste - 5 segs a 5 vezes a potência nominal para 3 watts e menos; 5 segs a 10 vezes a potência nominal para 4 watts e mais]	Max. $\Delta R \pm (2\% + R05)$
Tolerâncias de Resistência Disponíveis	±10%[K]; ±5% [J]; ±3%[H]; ±2%[G]; ±1%[F]

Aumento da temperatura do resistor como função da potência aplicada [Ver gráfico apresentado]

O gráfico apresentado é de natureza geral e reflete o aumento de temperatura de alguns tipos específicos para a orientação geral do engenheiro de projeto. Leitura exata para qualquer tipo HTR particular e valor específico de resistência pode ser obtido do fabricante mediante pedido.

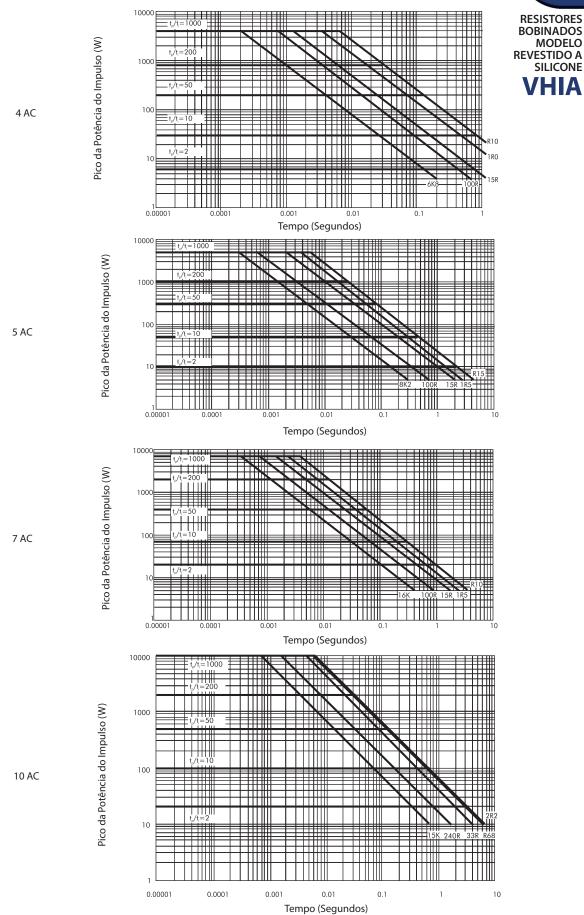
1 AC


3 MC

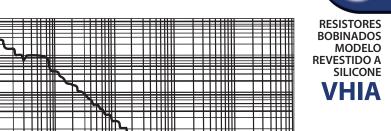

Capacidade de Impulso:

Para o engenheiro de projeto a HTR escolheu alguns tipos e forneceu abaixo informação vital na forma de tabelas / gráficos que ilustram duas características importantes da versão de impulso destes tipos de HTR.

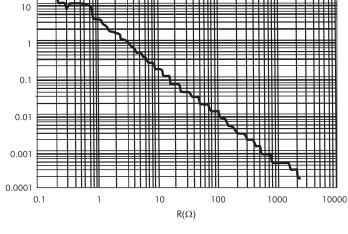
Impulso Regular - O pico máximo de potência (W) de impulso permitido como função da duração (T) do impulso em segundos. (Impulso repetitivo) - tp - tempo de repetição dos impulsos / ti - tempo de impulso - duração do pulso.

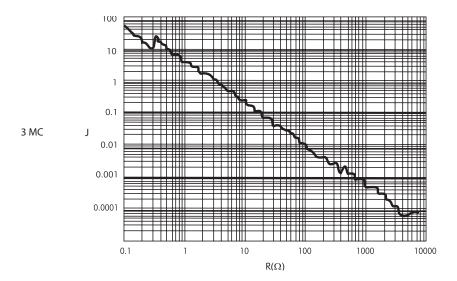

Pico da Potência do Impulso (W)

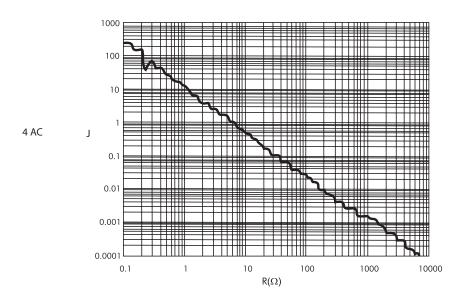
Tempo (Segundos)



SILICONE

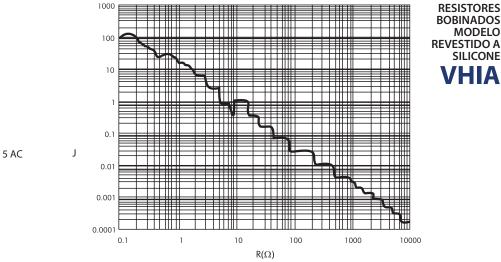

Capacidade de Impulso – Energia (J) como função de R (Ω) (Impulso Único)

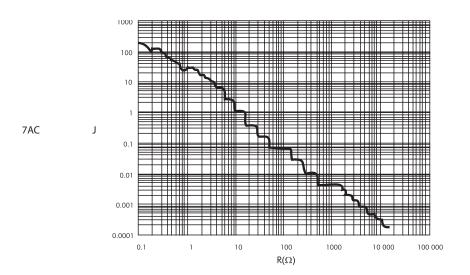


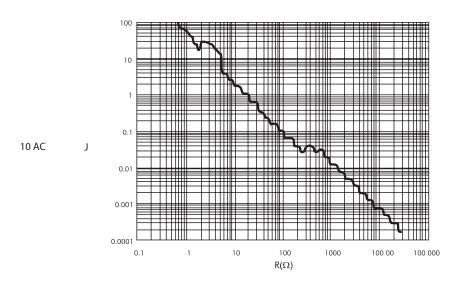

1 AC

100

J







BOBINADOS MODELO

SILICONE

REVESTIDO A

SILICONE

O engenheiro de projeto é advertido de que estes gráficos são de natureza geral e fornecidos apenas para a sua orientação geral para a escolha da potência nominal necessária e resistência do dispositivo a ser usado para a proteção do circuito.

 $\'{E} essencial que isto seja validado em testes reais e a HTR ficar\'a contente em fornecer as amostras necessárias para validação e homologação.$

Por favor adicionar ao tipo de HTR o sufixo "I" quando uma versão de impulso do dispositivo for necessária.

ESPECIFICAÇÕES AMBIENTAIS

PARÂMETRO / TESTE DE DESEMPENHO & MÉTODO DE TESTE	REQUISITOS DE DESEMPENHO
Coeficiente de Temperatura [Método de teste 304 de MIL 202F] [Figuras TCR apresentadas são baseadas na utilização de elementos resistivos normalmente eficazes e podem ser significativamente reduzidos a pedido]	± 120ppm/°C para < R10; ± 80ppm/°C para < 1R0; ± 60ppm/°C para < 100R; ± 90ppm/°C ou ± 30ppm/°C para > 100R, dependendo do fio escolhido
Calor Úmido (Estado Estacionário)	Max. $\Delta R \pm [5\% + R05]$
[Método de teste no. 103B de MIL 202F e condição de teste 'D']	Sem dano mecânico.
Tempo de Vida em Carga	Max. $\Delta R \pm [5\% + R05]$
[Método de teste no. 108A de MIL 202F]	Sem dano mecânico.

ESPECIFICAÇÕES MECÂNICAS

PARÂMETRO / TESTE DE DESEMPENHO & MÉTODO DE TESTE	REQUISITOS DE DESEMPENHO
Ensaio de Tração / Robustez dos Terminais [Força aplicada desde 2 a 4.5 Kgs dependendo do tamanho]	Sem dano mecânico
Soldabilidade [Método de teste no. 208F de MIL 202F]	Continua e satisfatória $\Delta R < \pm [1\% + R05]$

INFORMAÇÃO PARA ENCOMENDA

Série	Tipo	Embalagem	Valor da Resistência	Tolerância
VHIA	5AC / 5AC*	Granel 5AC / 5AC* Fita & Munição 5ACT / 5AC*T Fita & Carretel 5ACTR / 5AC*TR	100R	J

- 1. Versão RoHS 0.5 MC *
- 2. Enrolamento não indutivo N 0.5 MC
- 3. Modelo de Impulso 0.5 MC I
- 4. Embalagem Fita & Munição 0.5 MCT
- 5. Embalagem Fita & Carretel 0.5 MC TR

Fita: Os tipos 0.5MC, 1MC, 1AC, 4C, 3C, 3MC, 4MC, 2.5C1, 2.5C, 5C1, 5AC, 5C, 7AC, 4CL, 7C1, 10AC, 10C1, 15AC, 15AC1 estão disponíveis em fita. Por favor ver especificações Fita / Munição. Fita / Carretel a pedido.